Zum Hauptinhalt springen
  1. Katalog von Sichtungen/
  2. Gliederfüßer/

Insekten

Lat. „Insecta“
Klasse des Stamms „Gliederfüßer“
1 Klasse, 7 Unterordnungen, 2 Familien, 7 Ordnungen, 207 Arten

Insekten (Insecta), auch Kerbtiere oder Kerfe genannt, sind die artenreichste Klasse der Gliederfüßer (Arthropoda) und zugleich die mit absoluter Mehrheit auch artenreichste Klasse der Tiere überhaupt. Beinahe eine Million Insektenarten sind bisher wissenschaftlich beschrieben worden (925.000 nach Grimaldi/Engel 2005, 865.000 nach Nielsen/Mound 1997). Damit sind mehr als 60 Prozent aller beschriebenen Tierarten Insekten. Nach verschiedenen Hochrechnungen rechnet man allerdings mit einem Vielfachen, wobei vor allem in den tropischen Regenwäldern noch Millionen unentdeckter Arten vermutet werden. Alleine aus Deutschland sind 2022 etwa 34.000 Arten von Insekten bekannt. Fossil lassen sich Insekten zum ersten Mal vor rund 400 Millionen Jahren im Devon nachweisen. Das Wort „Insekt“ (aus lateinisch īnsectum „eingeschnitten“) wurde im 18. Jahrhundert als Fremdwort übernommen und bedeutet demnach „eingeschnittenes (Tier)“, was sich auf die stark voneinander abgesetzten Körperteile bezieht. Es ist eine Lehnübersetzung von altgriechisch ἔντομα [ζῶα] éntoma zōa, deutsch ‚Insekten, Kerbtiere‘ (wörtlich ‚eingeschnittene [Tiere]‘; zu ἐντέμνειν entémnein, deutsch ‚einschneiden‘), das in Entomologie (Insektenkunde) enthalten ist. Der Begriff „Kerbtier“ geht auf den deutschen Schriftsteller Philipp von Zesen zurück. Früher wurde auch der wissenschaftliche Name Hexapoda (griechisch für „Sechsfüßer“) verwendet, der heute für eine übergeordnete Gruppe reserviert ist (siehe Abschnitt zur Systematik).

Hierarchie

Staubläuse
Lat. „Psocodea“
Ordnung der Klasse „Insekten“
1 Ordnung, 2 Arten
Taghafte
Lat. „Hemerobiidae“
Familie der Klasse „Insekten“
1 Familie, 2 Arten
Fliegen
Lat. „Brachycera“
Unterordnung der Klasse „Insekten“
1 Unterordnung, 15 Familien, 33 Arten
Florfliegen
Lat. „Chrysopidae“
Familie der Klasse „Insekten“
1 Familie, 2 Arten
Heuschrecken
Lat. „Orthoptera“
Ordnung der Klasse „Insekten“
1 Ordnung, 16 Arten
Käfer
Lat. „Coleoptera“
Ordnung der Klasse „Insekten“
1 Ordnung, 19 Familien, 66 Arten
Libellen
Lat. „Odonata“
Ordnung der Klasse „Insekten“
1 Ordnung, 2 Unterordnungen, 5 Arten
Mücken
Lat. „Nematocera“
Unterordnung der Klasse „Insekten“
1 Unterordnung, 1 Überfamilie, 3 Familien, 4 Arten
Ohrwürmer
Lat. „Dermaptera“
Ordnung der Klasse „Insekten“
1 Ordnung, 4 Arten
Pflanzenläuse
Lat. „Sternorrhyncha“
Unterordnung der Klasse „Insekten“
1 Unterordnung, 1 Überfamilie, 3 Arten
Pflanzenwespen
Lat. „Symphyta“
Unterordnung der Klasse „Insekten“
1 Unterordnung, 1 Familie, 2 Arten
Schaben & Termiten
Lat. „Blattodea“
Ordnung der Klasse „Insekten“
1 Ordnung, 2 Arten
Schmetterlinge
Lat. „Lepidoptera“
Ordnung der Klasse „Insekten“
1 Ordnung, 4 Familien, 17 Arten
Taillenwespen
Lat. „Apocrita“
Unterordnung der Klasse „Insekten“
1 Unterordnung, 1 Infraordnung, 1 Familie, 25 Arten
Wanzen
Lat. „Heteroptera“
Unterordnung der Klasse „Insekten“
1 Unterordnung, 8 Familien, 41 Arten
Zikaden
Lat. „Auchenorrhyncha“
Unterordnung der Klasse „Insekten“
1 Unterordnung, 2 Familien, 6 Arten

Äußere Anatomie
#

Die Größe der Insekten variiert sehr stark und liegt bei den meisten Arten zwischen einem und 20 Millimetern. Die kleinsten Arten sind in Eiern anderer Insekten parasitierende Hautflügler (Zwergwespen), die Männchen der kleinsten bekannten Art (Dicopomorpha echmepterygis) werden 0,14 bis 0,24 mm lang. Die kleinsten frei lebenden Insekten sind Zwergkäfer mit einer minimalen Körperlänge von etwa 0,4 mm. Die größten bekannten Insekten sind Stabschrecken mit etwa 33 Zentimetern Körperlänge sowie der Riesenbockkäfer (Titanus giganteus) mit einer Körperlänge von 15 Zentimetern. Entsprechend ihrer Lebensweise kann der Körper der Insekten langgestreckt, abgeflacht oder mehr oder weniger kugelig sein. Allen Insekten gemeinsam ist ein Exoskelett aus dem verfestigenden Strukturprotein Sklerotin und dem Polysaccharid Chitin sowie die anatomisch meist deutlich sichtbare Gliederung in die drei Abschnitte (Tagmata) Kopf (Caput), Brust (Thorax) und Hinterleib (Abdomen) und das Vorhandensein von genau drei Beinpaaren. Alle Körperteile bestehen aus einzelnen Segmenten, die eine Rückenplatte (Tergit), eine Bauchplatte (Sternit) sowie Seitenplatten (Pleurite) aufweisen. Seitlich der einzelnen Segmente sind im Grundbauplan Öffnungen des Tracheensystems, so genannte Stigmen, angelegt, deren tatsächliche Anzahl jedoch bei den einzelnen Taxa der Insekten stark schwanken kann. Auch Extremitäten und deren Teile (Mundwerkzeuge, Styli, Gonopoden) können an jedem einzelnen Segment jeweils in Paaren vorkommen. Der Thorax trägt sechs Beine (drei Paare). Jedes Segment besitzt außerdem ein Ganglienpaar im Bauchmark, wobei die Ganglien des Kopfes zu einem Oberschlund- und einem Unterschlundganglion verschmolzen sind. Zwischen den einzelnen Segmenten befinden sich dehnbare Häutchen, die Intersegmentalhäute, die eine Beweglichkeit der Segmente gegeneinander sowie eine Volumenveränderung des Körpers bei der Eiproduktion, Nahrungsaufnahme oder Atmung ermöglichen. Bei starr verschmolzenen Segmenten, etwa im Kopf, sind diese Häutchen nicht vorhanden. Das Exoskelett bildet die äußere Schicht des Insektenkörpers. Diese Cuticula wird von einer darunter liegenden Epidermis gebildet. In ihr eingebettet befinden sich die Sinnesorgane sowie verschiedene Drüsenausgänge des Insekts. Mit mehr oder weniger starker Beteiligung der Epidermis bildet das Exoskelett verschiedene Oberflächenstrukturen aus, zu denen Warzen, Dornen, Haare, Borsten, Schuppen und Höcker gehören. Durch die Einlagerung von Farbstoffen (Pigmentfarben) oder aufgrund spezieller lichtbrechender Oberflächen (Interferenzfarben) können die Außenschicht des Insekts oder einzelne Körperteile gefärbt sein. Als Sinnesorgane dienen vor allem Haarsensillen, die über den Körper verteilt sind. Diese reagieren auf Erschütterungen und Schwingungen, können jedoch auch Gerüche, Feuchtigkeit oder Temperaturen wahrnehmen. Einige dieser Sinneszellen sind zu Sinnesorganen gruppiert, so etwa das Johnstonsche Organ am Pedicellus der Antenne oder die Tympanalorgane zur Geräuschwahrnehmung, die man beispielsweise bei den Langfühlerschrecken findet. Dadurch ist die Wahrnehmung von Schwingungen im Bereich von 1 Hz bis 100.000 Hz möglich. Als optische Sinnesorgane dienen die Facettenaugen sowie die Ocellen, bei vielen Larven auch die larvalen Punktaugen.

Lebensräume
#

Insekten sind in fast allen Lebensräumen der Erde zu finden. Eine große Ausnahme sind die Ozeane, in welchen man keine Insekten findet (lediglich etwa 100 Arten auf der Meeresoberfläche). Auch wenn die Ozeane aus mehreren Gründen sehr unwirtliche Lebensräume für Insekten sind, bleibt es in Anbetracht der insgesamt sehr hohen Zahl an Insektenarten eine offene Frage der Wissenschaft, warum sich noch keine einzige Art an das Leben im Meer anpassen konnte. Die größte Artenvielfalt der Insekten existiert in den tropischen Gebieten, während in Extremlebensräumen wie den Polargebieten, den Hochgebirgen und den Meeresoberflächen nur sehr wenige, aber hochangepasste Insektenarten leben. So findet man etwa in der Antarktis die Zuckmückenart Belgica antarctica, auf der Meeresoberfläche die zu den Wanzen zählenden Meerwasserläufer und im Gezeitenwatt die Larven von Zuckmücken der Gattung Clunio. Einige Arten sind sehr stark spezialisiert und kommen entsprechend nur in besonders geeigneten Lebensräumen vor (stenöke Arten), andere dagegen können in fast allen Lebensräumen mit Ausnahme der Extremlebensräume leben (euryöke Arten) und wurden teilweise durch den Menschen weltweit verbreitet, so dass sie heute Kosmopoliten sind. Zu letzteren gehören vor allem verschiedene Arten der Schaben, Ameisen und Termiten sowie die als Nutztiere gehaltenen Honigbienen. Die meisten Insekten leben in Böden oder auf bodennahen Strukturen sowie auf und in Pflanzen. Man geht davon aus, dass mit jeder Baumart der tropischen Regenwälder etwa 600 Insektenarten assoziiert sind, wobei man bei 50.000 Baumarten auf eine Artenzahl der Insekten von etwa 30 Millionen kommt. Auch auf Tierarten leben eine Reihe von Insekten, meistens als Ektoparasiten wie die verschiedenen Arten der Tierläuse und Flöhe oder als Kommensalen und Jäger im Fell der Tiere. Der Mensch stellt hierbei keine Ausnahme dar, auf ihm findet man etwa die verschiedenen Arten der Menschenläuse. Seltener sind Insekten Endoparasiten in Tieren. Zu nennen sind hier vor allem die zu den Zweiflüglern gehörenden Dasselfliegen, bei denen sich die Larven im Rachen (Rachendasseln), der Nasenhöhle (Nasendasseln) oder sogar im Magen (Magendasseln) von Pflanzenfressern entwickeln.

Lebensweise
#

Aufgrund ihrer Vielfalt haben Insekten heute beinah jede ihrer Größe angemessene ökologische Nische realisiert. Dabei spielt eine große Anzahl der Arten eine bedeutende Rolle bei der Remineralisierung organischer Stoffe im Boden, in der Bodenstreu, im Totholz und in anderen organischen Strukturen. Zu dieser Gruppe gehören auch die Leichenzersetzer, die in Tierleichen zu finden sind. Viele weitere Arten leben als Pflanzenfresser von lebenden Pflanzenteilen, das Spektrum reicht dabei von Wurzelhaaren über Holz bis hin zu Blättern und Blüten. Eine Reihe von Arten lebt als Nektar- und Pollensammler und spielt dabei eine wichtige Rolle bei der Pflanzenbestäubung. Wieder andere Insekten leben in und an Pilzen und ernähren sich von diesen. Eine große Gruppe von Insekten ernährt sich räuberisch von anderen Insekten oder kleineren Beutetieren. Eine letzte Gruppe stellen diejenigen Insekten dar, die sich von Teilen größerer Tiere wie Haaren, Schuppen und ähnlichem ernähren. In diese Gruppe gehören auch die zahlreichen Parasiten unter den Insekten, die beispielsweise Blut saugen oder sich in lebenden Geweben entwickeln. Eine Besonderheit innerhalb der Insekten stellen verschiedene Arten von staatenbildenden Insekten dar. Diese Form des Zusammenlebens hat sich mehrfach unabhängig voneinander bei den Termiten und verschiedenen Hautflüglern (Ameisen, Bienen, Wespen) entwickelt. Bei diesen Tieren kommt es zum Aufbau eines Insektenstaates, in dem die Einzeltiere bestimmte Rollen innerhalb der Gesellschaft übernehmen. Häufig kommt es dabei zur Bildung von Kasten, deren Mitglieder sich morphologisch und in ihrem Verhalten gleichen. Bei vielen Ameisen findet man beispielsweise Arbeiter, Soldaten und Nestpfleger. Die Fortpflanzung übernehmen in diesen Fällen nur sehr wenige Geschlechtstiere innerhalb des Insektenstaates, manchmal nur eine einzige Königin, die befruchtete und unbefruchtete Eier legt. Viele Insekten verfügen über die Fähigkeit zu fliegen (Insektenflug), Fluginsekten stellen die artenreichste Gruppe im gesamten Tierreich. Die meisten Arten haben zwei Paar Flügel.

Fortpflanzung und Entwicklung
#

Die Spermienübertragung erfolgt bei den Insekten ursprünglich über Spermatophoren, also Spermienpakete. Diese werden bei den Felsenspringern und den Fischchen von den Männchen auf dem Boden abgelegt und hier von den Weibchen aufgenommen. Bei allen folgenden Gruppen der Insekten gibt es eine direkte Spermienübertragung durch eine Kopulation, bei der die Spermien direkt in die Vagina oder die Bursa copulatrix eingebracht werden und hier entweder die Eizellen befruchten oder in das Receptaculum seminis zur Lagerung weitergeleitet werden. Die meisten Insekten legen nach der Begattung Eier ab (Ovoparie), andere sind ovovivipar, brüten die Eier also noch im Körper zur Schlupfreife aus. Noch seltener kommt es vor, dass bereits fertig entwickelte Larven (Larviparie) oder sogar Puppen (Pupiparie) zur Welt gebracht werden. Die Furchung erfolgt bei den meisten Insekten superfiziell. Das bedeutet, dass sich auf dem sehr dotterreichen Ei mit zentralem Dotter (centrolecithales Ei) ein Furchungszentrum ausbildet, von dem die Furchung ausgeht. In seinem Bereich bilden sich mehrere Tochterkerne mit umgebendem Plasma (Furchungsenergiden), die durch Teilungen zu einem einschichtigen Blastoderm als Hüllepithel oder Serosa um den Dotter herum. Im ventralen Bereich bildet sich dann eine Keimanlage, die als Keimstreif in den Dotter hineinwächst und eine Höhle bildet (Amnionhöhle). In dieser Höhle findet die Hauptkeimbildung statt, nach deren Abschluss sich der Keim wieder nach außen entrollt und über dem Dotter der Rücken des Tieres geschlossen werden kann. Aus den Eiern schlüpfen dann Larven (Juvenilstadien mit eigenen Larvalmerkmalen) oder Nymphen (Juvenilstadien ohne eigene Merkmale).

Außerhalb des Eies folgt die postembryonale Entwicklung, nach der Insekten klassisch in hemimetabole und holometabole Insekten unterteilt werden. Dabei handelt es sich allerdings nur bei letzteren auch um eine taxonomische Gruppe, da die hemimetabole Entwicklung dem ursprünglichen Zustand entspricht. Die Entwicklung ist bei den verschiedenen Gruppen sehr unterschiedlich und hängt sehr stark von der Lebensweise der Juvenilstadien und der Imagines ab. Bei allen hemimetabolen Insekten kommt es über eine unterschiedliche Anzahl von Larven- oder Nymphenstadien ohne Puppenstadium zur Ausbildung des ausgewachsenen Tieres, der Imago. Zwischen den einzelnen Stadien findet dabei immer eine Häutung statt, bei der die alte Kutikula abgeworfen und eine neue angelegt wird. Abhängig von der Konzentration des Juvenilhormons im Blut kommt es dabei entweder zu einer Häutung von einer Larvenform in die nächste (bei viel Juvenilhormon) oder von einer Larvenform zur Imago (bei wenig Juvenilhormon). Den Zeitpunkt der Häutung bestimmt ein weiteres Hormon, das Ecdyson. Bei der Häutung kommt es vor allem zum Wachstum der Tiere, außerdem werden einzelne Merkmale neu angelegt. Dies geschieht durch eine Histolyse einzelner Strukturen und die Ausbildung von Imaginalanlagen oder das Ausstülpen spezieller Imaginalscheiben.

Bei den meisten hemimetabolen Insekten wie den verschiedenen Heuschreckenformen oder den Wanzen ähnelt die Nymphe in Grundzügen dem erwachsenen Tier und weist außer den fehlenden Flügeln keine besonderen Larvalanpassungen auf. Demgegenüber gibt es allerdings auch hemimetabole Insekten mit echten Larven, beispielsweise die Libellen oder die Eintagsfliegen. Eine feinere Unterteilung der Hemimetabolie ist möglich. So spricht man etwa von einer Palaeometabolie (Fischchen, Felsenspringer), wenn die Larven kaum eigene Merkmale aufweisen und sich nur durch Größenänderung zur Imago entwickeln. Die Heterometabolie ist vor allem durch eine schrittweise Entwicklung der Flügel gekennzeichnet und kommt bei den Libellen, Steinfliegen und den meisten Schnabelkerfen vor. Schließlich gibt es noch die Neometabolie, bei der die Flügelanlagen erst bei den beiden letzten Larvenstadien angelegt werden; dies ist etwa bei einigen Zikaden und den Fransenflüglern der Fall. Holometabole Insekten durchlaufen eine Metamorphose, ausgehend vom Ei über die Larve zur Puppe und dann zum erwachsenen Tier (Imago). Die Larve hat oft nicht die geringste physische Ähnlichkeit mit der Imago und besitzt eine Reihe von Eigenmerkmalen einschließlich anderer Lebensräume und Futterquellen im Vergleich zur Imago – ein nicht unerheblicher ökologischer Vorteil der Holometabola.

Fossilbeleg
#

Das früheste verbreitet einem Insekt zugeordnete Fossil ist Rhyniognatha hirsti aus dem Pragium, einer Stufe des Unterdevons vor etwa 407 Millionen Jahren. Aus derselben Formation stammt auch der älteste Springschwanz Rhyniella precursor, der als das älteste Insekt galt, solange diese zu den Insekten gerechnet wurden. Diese relativ fortgeschrittenen Fossilien lassen auf eine bereits länger dauernde Evolutionsgeschichte schließen, die vermutlich bis ins Silur zurückreicht. Insekten sind damit wohl nur unwesentlich jünger als die ältesten Funde von terrestrischen Tieren überhaupt. Da von Rhyniognatha nur schwer interpretierbare Relikte, darunter vermutlich Mandibeln, erhalten blieben, sind Aussagen darüber, wie es aussah und in welche heutige Verwandtschaft es einzuordnen wäre, spekulativ. Die Erstbeschreiber halten sogar einen Zusammenhang mit geflügelten Formen für denkbar, was allerdings sehr spekulativ bleibt. Neuere Untersuchungen lassen sogar denkbar erscheinen, dass es sich in Wirklichkeit um einen Myriapoden handelte. Tatsächliche fossile Funde geflügelter Insekten liegen etwa von Gesteinen der Grenze Unterkarbon-Oberkarbon vor, das heißt, sie sind etwa 95 Millionen Jahre jünger. (Ältere devonische Funde, als Eopterum devonicum beschrieben, erwiesen sich später als Reste des Carapax einer Krebsart.) Geflügelte Insekten liegen hier aus einer Vielzahl von Ordnungen, darunter sowohl lebende als auch ausgestorbene, vor. Die Flügelmorphologie erlaubte bereits unterschiedliche Flugstile. Zur karbonischen Fauna gehörten z. B. die Palaeodictyoptera, die manchmal auch am ersten Thoraxsegment kleine flügelartige Fortsätze aufwiesen. Während des Karbons machten diese altertümlichen Ordnungen etwa ein Drittel der Insektenfauna aus; Schaben waren individuenreich vertreten, aber nicht sonderlich artenreich. Von den 27 im Karbon nachgewiesenen Insektenordnungen sind 8 am Übergang zum Perm oder wenig später ausgestorben. Drei weitere Ordnungen starben am Übergang zur Trias aus. Seit diesem evolutionären Flaschenhals haben alle überlebenden Linien bis heute mehr oder weniger stetig an Diversität zugenommen, auch das dritte Massenaussterben an der Kreide/Tertiär-Grenze scheint die Insekten nur wenig betroffen zu haben. Wichtiger für diese erhöhte Diversität scheinen überraschenderweise nicht schnellere Artbildungsraten, sondern verminderte Aussterberaten zu sein.Sowohl Radiationen als auch längere Perioden mit niedrigen Artenzahlen und wenig evolutionären Neuerungen können mit ausgeprägten Schwankungen des Sauerstoffspiegels der Erde im Paläozoikum in Verbindung gebracht werden, ausgedehnte Perioden mit sehr geringen fossilen Funden sind daher wohl nicht ausschließlich auf Zufälle der fossilen Überlieferung zurückzuführen, sondern können durchaus real sein. Während der Perioden mit ungewöhnlich hohem Sauerstoffgehalt lebten spektakuläre Rieseninsekten mit Körpergrößen, die alle rezenten Formen bis um das Zehnfache übersteigen. Die Urlibelle Meganeura monyi (gefunden in Commentry, Frankreich) erreichte eine Flügelspannweite von 63 cm, Meganeuropsis permiana soll sogar 71 cm Spannweite besessen haben, wahrscheinlich nahe an der Obergrenze des Arthropoden-Bauplans für Flugfähigkeit.Im Perm tauchten die meisten modernen Insektenordnungen auf, doch spielten gerade die heute dominierenden holometabolen Insekten lange Zeit eine untergeordnete Rolle, und erst ab der Trias kam es bei diesen zu einer wahren Explosion der Arten- und Formenvielfalt. Gründe für diesen Erfolg werden im Massenaussterben am Ende des Perms gesehen (bisher dominierende Insekten starben aus), in besserer Widerstandsfähigkeit gegen das aride Klima des Perms und in der Ausbreitung der Samenpflanzen.Alle gegenwärtig anerkannten Insektenordnungen und knapp zwei Drittel der Familien sind auch fossil belegt, wobei ihre tertiären Artenzahlen gut mit ihren heutigen korrelieren. Eine Ausnahme bilden hier die Schmetterlinge, die fossil weniger artenreich belegt sind.

Systematik
#

Drei Gruppen, die traditionell als Urinsekten zu den Insekten gezählt wurden, die Springschwänze (Collembola), Doppelschwänze (Diplura) und Beintastler (Protura) gelten heute nicht mehr als eigentliche Insekten. Sie werden zusammen mit diesen hier innerhalb der übergeordneten Gruppe der Sechsfüßer (Hexapoda) geführt. Sowohl die Hexapoda als auch die Insekten als solche gelten aufgrund ihrer typischen Merkmale (Apomorphien) als gesicherte Taxa. Die tatsächliche Schwestergruppe der Insekten innerhalb der Hexapoda ist allerdings umstritten.

Insektensterben
#

Seit Ende der 1980er Jahre wird im deutschen Raum von einem Insektensterben gesprochen, was sich sowohl auf einen Rückgang der Artenzahl von Insekten (Biodiversität) als auch auf die Zahl der Insekten in einem Gebiet (Entomofauna) bezieht. Anfang 2019 veröffentlichten australische Forscher eine weltweite Metastudie. Sie werteten 73 Studien zum Insektensterben aus verschiedenen Weltregionen aus und kamen zu dem Schluss, dass es in den vorangegangenen Jahrzehnten zu einer massiven Abnahme der Biomasse und der Biodiversität der Insekten gekommen war.

Literatur
#

Michael Chinery: Field Guide to Insects of Britain and Northern Europe. 3. Auflage. HarperCollins, London 1993, ISBN 0-00-219918-1. Michael Chinery: Pareys Buch der Insekten. Über 2000 Insekten Europas. 2. Auflage. Kosmos, Stuttgart 2012, ISBN 978-3-440-13289-0. Vicki Hird: Rebugging the Planet: The Remarkable Things that Insects (and Other Invertebrates) Do – And Why We Need to Love Them More. Chelsea Green Publishing, 2021, ISBN 978-1-64502-018-9. Bernhard Klausnitzer: Insecta (Hexapoda), Insekten. In: Wilfried Westheide (Begr./Hg.), Reinhard Rieger (Begr.), Gunde Rieger (Hrsg.): Spezielle Zoologie. Teil 1: Einzeller und Wirbellose Tiere. 3. Auflage. Springer Spektrum, Berlin/ Heidelberg 2013, ISBN 978-3-642-34695-8. Oliver Milman: The Insect Crisis: The Fall of the Tiny Empires That Run the World. Norton & Company, 2022, ISBN 978-1-324-00659-6. Christopher O’Toole: Faszinierende Insekten. Wunder und Rätsel einer fremden Welt. Bechtermünz Verlag, Augsburg 2000, ISBN 3-8289-1584-1. Erwin Stresemann (Begr.), Hans-Joachim Hannemann (Hrsg.), Bernhard Klausnitzer (Hrsg.), Konrad Senglaub (Hrsg.): Exkursionsfauna von Deutschland, Band 2, Wirbellose: Insekten. 11. neu bearbeitete und erweiterte Auflage, Volk und Wissen, Berlin 2011, ISBN 978-3-8274-2451-8.

Weblinks#

Literatur von und über Insekten im Katalog der Deutschen Nationalbibliothek Systematik, Körperbau, Fotos und Angaben zur Lebensweise von über 850 Insektenarten in Mitteleuropa Insect Evolution Kommentiertes Link-Verzeichnis (in Englisch)

== Einzelnachweise ==

Insekten (Insecta), auch Kerbtiere oder Kerfe genannt, sind die artenreichste Klasse der Gliederfüßer (Arthropoda) und zugleich die mit absoluter Mehrheit auch artenreichste Klasse der Tiere überhaupt. Beinahe eine Million Insektenarten sind bisher wissenschaftlich beschrieben worden (925.000 nach Grimaldi/Engel 2005, 865.000 nach Nielsen/Mound 1997). Damit sind mehr als 60 Prozent aller beschriebenen Tierarten Insekten. Nach verschiedenen Hochrechnungen rechnet man allerdings mit einem Vielfachen, wobei vor allem in den tropischen Regenwäldern noch Millionen unentdeckter Arten vermutet werden. Alleine aus Deutschland sind 2022 etwa 34.000 Arten von Insekten bekannt. Fossil lassen sich Insekten zum ersten Mal vor rund 400 Millionen Jahren im Devon nachweisen. Das Wort „Insekt“ (aus lateinisch īnsectum „eingeschnitten“) wurde im 18. Jahrhundert als Fremdwort übernommen und bedeutet demnach „eingeschnittenes (Tier)“, was sich auf die stark voneinander abgesetzten Körperteile bezieht. Es ist eine Lehnübersetzung von altgriechisch ἔντομα [ζῶα] éntoma zōa, deutsch ‚Insekten, Kerbtiere‘ (wörtlich ‚eingeschnittene [Tiere]‘; zu ἐντέμνειν entémnein, deutsch ‚einschneiden‘), das in Entomologie (Insektenkunde) enthalten ist. Der Begriff „Kerbtier“ geht auf den deutschen Schriftsteller Philipp von Zesen zurück. Früher wurde auch der wissenschaftliche Name Hexapoda (griechisch für „Sechsfüßer“) verwendet, der heute für eine übergeordnete Gruppe reserviert ist (siehe Abschnitt zur Systematik).

Abstammungsdiagramm

%%{ init: { 'theme': 'base', 'themeVariables': { 'primaryColor': '#83a09c', 'primaryTextColor': '#212d2b', 'primaryBorderColor': '#fff', 'lineColor': '#fff', 'secondaryColor': '#006100', 'tertiaryColor': '#fff' } } }%% flowchart LR classDef active fill:#fff gliederfuesser("Stamm: Gliederfüßer"):::active gliederfuesser-.->tausendfuesser("Unterstamm: Tausendfüßer") gliederfuesser==>insekten("Klasse: Insekten"):::active gliederfuesser-.->krebstiere("Unterstamm: Krebstiere") gliederfuesser-.->spinnentiere("Klasse: Spinnentiere") click tausendfuesser href "/katalog/gliederfuesser/tausendfuesser/" click insekten href "/katalog/gliederfuesser/insekten/" click krebstiere href "/katalog/gliederfuesser/krebstiere/" click spinnentiere href "/katalog/gliederfuesser/spinnentiere/" click gliederfuesser href "/katalog/gliederfuesser/"

Weitere Informationen

Copyright

Wikipedia
Dieser Text basiert auf dem Artikel Insecta aus der freien Enzyklopädie Wikipedia und steht unter der Lizenz Creative Commons CC-BY-SA 4.0). In der Wikipedia ist eine Liste der Autoren verfügbar.